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I NTRODUCTION 

P ER IN G U E Y' S adder is a snake closely confined to the sand areas 
of the coastal Namib Desert, where it attains a length of about r foot. 

In certain restricted localities it is by no means uncommon, although it is 
a snake poorly represented in most museum collections. During the course 
of a single night, for instance, nine specimens were seen by Dr C. Koch at 
Gobabeb, a water hole in the Kuisib River course of South West Africa. 
There can be little doubt that the snake is ordinarily nocturnal, although 
it may be found abroad on the overcast misty days so characteristic of the 
coastal Namib at certain times of the year. Normally specimens can most 
readily be obtained by digging at the bases of small bushes where the snakes 
lie concealed in the sand of the shaded areas. One specimen was collected 
as it lay among the branches of a small shrub, showing that these adders 
are capable of climbing. 

LocoMOTION 

The form of locomotion greatly favoured by Bitis peringueyi is sidewinding, 
irrespective of the hardness of the surface over which it moves. In certain 
circumstances, as when the snake is climing among branches, serpentine glide 
(horizontal undulatory locomotion) is used, but none of the specimens studied 
was seen to make use of rectilinear locomotion. When sidewinding, the snake 
produces tracks similar to those of the better-known American sidewinder, 
Crotalus cerastes: the rou .hh: ... R:_l!allel each have a hook at one end made 
by the head and neck as it is placed down, prior to the making of track proper. 
As may be seen in PI. IA, which shows the snake moving over a slieet of sooted 
cardboard, a considerable amount of drag takes place between individual paral-
lels. It has been stated (van Riper, 1955) that the parallel tracks.of C. cerastes 
are quite separate and unconnected. In order to make a direct comparison 
between the tracks of this snake and those of Bitis peringueyi, some specimens 
of the horned rattlesnake were kindly supplied by Dr C. E. Shaw of the 
San Diego Zoological Gardens. Specimens equivalent in size to B. peringueyi 
(about r foot total length) were selected and were induced to sidewind over 
sheets of sooted cardboard as before. The tracks were found to be very similar 
to those of B. peringueyi so far as drag marks were concerned (PI. I B), but a 
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slight difference in track angle was observed. This will be dealt with shortly. 
The drag marks of both the rattlesnake and the adder are visible only when 
records are made on sooted cardboard; they are not apparent when the snake 
moves over sand. 

In the following discussion, on the movements involved during the locomotion 
of Peringuey's adder, reference should be made to the diagrams in Text-fig. r. 
Parts of the snake shaded black represent those parts of the body in contact 
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Text-fig. r. Body movements involved during sidewinding : (a) a hypothetical case in 
which one track only might be produced during a complete muscular cycle; (b) the 
normal condition where two parallel tracks are made simultaneously. 

with the ground; all unshaded length is raised above the surface. Clearly, 
Text-fig. I a represents a completely hypothetical case and one which could not 
work in practice, since the snake is not able to support practically its whole length 
-while pivoted near its head or tail. Nevertheless, this simplification is of value 
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as it shows how one track only might be made during a complete cycle of move-
ment. The normal condition in which two tracks are produced simultaneously 
is less easy to visualize. In position A the snake lies upon the surface with its 
head pointing in the direction of intended movement. A loop is then formed in 
the body, while the head and tail sections are raised. As the loop passes tail wards, 
the snake moves forwards along the track as shown since propulsive force is 
generated at the positions of the arrows. By stage 4 the cycle is complete and 
can be recommended. 

In practice, the sidewinder moves in precisely this manner except that two 
loops, not one, are formed in the body and two tracks are made simultaneously 
(Text-fig. r b). When this happens, the snake's body fluctuates between two 
primary positions, numbered 2 and 3· In position 2 the head isjust commencing 
a new track; in 3, two parallels are in the process of being made. 

When interpreting a set of completed tracks it is sometimes difficult to decide 
on the direction in which the snake has moved. In such a case, a line should be 
drawn linking the head-hooks at the end of each parallel track. This line then 
represents the path taken by the head, while the open ends of the hooks point in 
the direction of motion. It should be noted that the head-hooks can be at the 
right- or left-hand ends of the parallels. During eight consecutive runs over 
sheets of sooted cardboard, a Peringuey's adder moved four times with its head 
to the left and four with it to the right, suggesting that the snake has no pre-
ference for either position. During eight different runs, angles between the 
'parallel' tracks and the line linking the head-hooks varied from 21 to 47 
degrees, the average being 35 degrees. The equivalent angles for tracks of 
Crotalus cerastes varied from 17 to 40 degrees, with an average of 26 degrees, 
suggesting that the rattlesnake flexes its body more acutely during sidewinding 
than does the adder. In the case of Bitis peringueyi, the lengths of the tracks, 
inclusive of the head-hooks amount, on average to go % of the total length of the 
snake, thus it is possible to deduce the approximate length of a specimen from a 
measurement of the tracks which it produces. 

SPECULATIONS ON THE ORIGIN OF SIDEWINDING 

In the following discussion a suggestion is made on how sidewinding locomotion 
may have been derived from the more normal serpentine glide. Reference 
should be made to the diagram in Text-fig. 2, where shaded areas of the snake 
again represent parts of the body in contact with the ground. The lower part of 
the figure shows the snake gliding along a sinusoidal track. As has been pointed 
out by Gray (1946, 1953), propulsive thrust is generated in those parts of the 
body which show increasing curvature to the right or the left, when reading from 
the tail to the head of the snake. Forces exerted by the snake against projections 
in the ground act at right angles to the body of the snake as shown by the 
arrows in the diagram. During even motion, the resultant of all these normal 
forces 'produces a forward thrust equal but opposite to the or tangential 
forces opposing the snake's motion' (Gray, 1953). For the snake to be able to 
progress in the direction indicated by the line A- B, however, it is essential that 
the forces exerted to the left of the line should balance those exerted to the right. 
If the magnitude of the left-hand forces exceeds that of the right-hand ones, it is 
o.bvious that the path followed by the snake will be deflected to the right-hand 
s1de. 

Quite the most important feature of sidewinding is that alternate curves of the 
snake's body are raised above the ground and are thus incapable of exerting any 
fo.rce against small surface projections except at those points where contact is 

· still maintained. The upper part of Text-fig. 2 shows the sidewinding condition 
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in which forces .are exerted towards the left, since those parts of the body 
capable of e_xertmg nght-hand forces are no longer in contact with the ground. 
The result IS that the snak.e m?ves laterally as well as forwards. Sidewinding 
can .thus be. regarded an mevitaJ:>le of the snake raising alternate 
sectiOns of Its body while progressmg m a normal serpentine glide. 
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Text-fig. 2 Diagmm the relationship between horizontal undulatory locomotion 
and s1dewmdmg (upper). The snake .1s able to glide in the direction A-B 

smce left-hand thrusts balance those to the nght. When sidewinding, body-raising 
causes all propulsive thrust to be exerted on one side only (left in this case) with th 
result that the snake moves laterally as well as forward . ' e 

writers have maintained that sidewinders do not press back or side-
agamst the substratum during locomotion and that the force is applied 

vertically to the w,hich the snake mo':"es. ( r 932) states that 
the adv:antage of side"VI:'mdmg for the sandy habitat consists m it not requiring 
any resistance or reactiOns of the substratum, except that the latter has to carry 
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the weight of the snake'. Van Riper (1955) writes, concerning Crotalus cerastes: 
' the tracks were made by pressure only from above' . This is certainly not the 
case in Peringuey's adder which produces quite a considerable ridge behind its 
parallel tracks when traversing very loose sand (Pl. II A). It is clear that the higher 
the snake raises its body between contact points, the more steeply inclined will 
be the direction of its propulsive thrust. Nevertheless, it is essential that a hori-
zontal component should exist, as a snake which applies its locomotory force 
vertically to a surface will be capable of lifting itself upwards but not of propelling 
itself forwards. 

Since body-raising is a pre-requisite for sidewinding, it is interesting to specu-
late on the reason for a snake raising its body during locomotion in the first 
place. Several writers have presumed that sidewinding represents a specific 
adaptation allowing the snake to move over a loose unstable surface of sand 
(e.g. Cowles, 1920; Van Denburgh, 1922; Mosauer, 1932; Pope, 1937). How-
ever, Cowles ( 1956) has pointed out that C. cerastes lives in a desert area 
having perhaps less than r % of its area covered by loose sand. By far the greatest 
part of the surface is hard and smooth, attaining a periodic temperature of more 
than 6o° C. In view of this, Cowles has suggested that sidewinding in the horned 
rattlesnake is not a specific adaptation to life on loose sand, but rather assists 
the snake by reducing heat uptake by conduction while moving over the hot 
surface. Cowles also points out that among pit-vipers, sidewinding allows more 
rapid locomotion than does the conventional serpentine glide. On the extensive 
open plains this may be of particular importance since the snake often has to 
travel far to find food and a mate. Body-raising as a means of minimizing contact 
with a hot surface certainly seems to be a sound possibility, although nocturnal 
sidewinders would presumably have to contend with high surface temperatures 
only during times of enforced diurnal activity or when unexpectedly expelled 
from their hideouts by a predator. 

Perhaps some information on the origin of sidewinding may be derived from 
a study of those snakes which do not usually sidewind but which, when placed 
on a sufficiently smooth surface, can be induced to do so. One such animal is 
the common South African house snake, Boaedon fuliginosus. Under normal 
conditions this aglyphous snake moves by means of serpentine glide but when 
released on a smooth surface, devoid of adequate superficial projections, resorts 
to sidewinding which allows fairly rapid locomotion. The movement is, however, 
seldom regular and is punctuated by frequent stops. This fact makes it difficult 
to obtain a satisfactory track on sooted cardboard since after producing two or 
three parallel lines, the snake is inclined to rest and then on starting again, to 
erase the existing tracks with its tail. Fortunately, some undamaged records 
have been obtained and these do not differ substantially from the ones made by 
Peringuey's adder. Pl. liB shows how loops of the house snake's body are 
raised above the surface during sidewinding. The function of this body-raising 
is almost certainly to ensure that the propulsive thrust is no longer exerted 
horizontally, but rather at an angle, obliquely into the surface (Pl. II C). This 
inclined thrust then compensates for the absence of the larger Sl}rface irregulari-
ties, required for horizontal undulatory locomotion, while Hie fact that the 
weight of the snake is now applied over a relatively restricted length of body 
means that the bearing pressure per unit area is increased. These two factors 
would undoubtedly serve to improve traction. · 

In the desertic areas of Southern Africa there occur three different sidewinding 
snakes: Bitis peringueyi, B. cauda/is and B. cornuta. Of these, B. peringueyi is re-
stricted to sandy areas, but the other two are very commonly found on hard arid 
surfaces. Were B . peringueyi the only sidewinder, one might be tempted to 
conclude that its form of locomotion had been developed specially for life on loo:se 
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sand. The other two species however indicate that sidewinding is useful on hard 
surfaces as well. 

Boaedon fuliginosus is one of the many snakes capable of sidewinding when the 
surface characteristics demand it. If the surface is smooth enough, such snakes 
will sidewind, irrespective of whether the substrate is hot or cold. It seems 
likely therefore that Cowles's concept of sidewinding as a response to a heated 
surface may not be applicable in all cases. In the case of Peringuey's adder, 
which is nocturnal and capable of burrowing, this explanation seems less likely 
than it does in other diurnal snakes. Where nocturnal sidewinders are concerned 
it is suggested that sidewinding may have arisen from the necessity of moving 
over a very smooth surface either of loose sand or of hard-baked earth. Once 
the pattern had been established, body-raising associated with this form of 
locomotion would doubtless have assisted the snake greatly in its occasional 
daytime excursi_ons over an uncomfortably hot surface. 
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